Human coronaviruses and therapeutic drug discovery | Infectious Diseases of Poverty


  • 1.

    Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 2.

    Maier HJ, Bickerton E, Editors PB. Coronaviruses: methods and orotocols. New York: Springer; 2015.


    Google Scholar
     

  • 3.

    Fung TS, Liu DX. Human coronavirus: Host-pathogen interaction. Annu Rev Microbiol. 2019;73:529–57.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 4.

    Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490–502.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    WHO Coronavirus Disease (COVID-19) dashboard. https://covid19.who.int/. Accessed 2 June 2020.

  • 6.

    Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 7.

    Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen K. Coronaviruse-drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Wang Huan DSAL. Advances in the study of coronavirus entry pathways. J Virol. 2019;06:964–71.


    Google Scholar
     

  • 9.

    Ying T, Du L, Ju TW, Prabakaran P, Lau CC, Lu L, et al. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J Virol. 2014;88:7796–805.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 10.

    ter Meulen J, Bakker AB, van den Brink EN, Weverling GJ, Martina BE, Haagmans BL, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet. 2004;363:2139–41.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 11.

    Roberts A, Thomas WD, Guarner J, Lamirande EW, Babcock GJ, Greenough TC, et al. Therapy with a severe acute respiratory syndrome-associated coronavirus—neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters. J Infect Dis. 2006;193:685–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Han DP, Penn-Nicholson A, Cho MW. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology. 2006;350:15–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Huentelman MJ, Zubcevic J, Hernandez PJ, Xiao X, Dimitrov DS, Raizada MK, et al. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension. 2004;44:903–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Ohnuma K, Haagmans BL, Hatano R, Raj VS, Mou H, Iwata S, et al. Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody. J Virol. 2013;87:13892–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Raj VS, Smits SL, Provacia LB, van den Brand JM, Wiersma L, Ouwendijk WJD, et al. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus. J Virol. 2014;88:1834–8.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 16.

    O’Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PK, McMahon JB, et al. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol. 2010;84:2511–21.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 17.

    Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion RJ, Nunneley JW, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antivir Res. 2015;116:76–84.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue J, et al. Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother. 2016;60:6532–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Zhang H, Liu C, Li Q, Zhang J, Zhang X, Bai C, et al. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J Biol Chem. 2016;291:9218–32.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 20.

    Gao J, Lu G, Qi J, Li Y, Wu Y, Deng Y, et al. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J Virol. 2013;87:13134–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Channappanavar R, Lu L, Xia S, Du L, Meyerholz DK, Perlman S, et al. Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection. J Infect Dis. 2015;212:1894–903.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Xia S, Xu W, Wang Q, Wang C, Hua C, Li W, et al. Peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein HR1 and HR2 domains. Int J Mol Sci. 2018;19:487.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 23.

    Xia S, Yan L, Xu W, Agrawal AS, Algaissi A, Tseng CK, et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv. 2019;5:v4580.

    Article 
    CAS 

    Google Scholar
     

  • 24.

    Blaising J, Polyak SJ, Pecheur E. Arbidol as a broad-spectrum antiviral: an update. Antivir Res. 2014;107:84–94.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 25.

    Fontanes V, Moscona A, Hong PW, Grock A, Zhang TH, et al. A broad-spectrum antiviral targeting entry of enveloped viruses. Proc Natl Acad Sci USA. 2010;107:3157–62.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    Wang C, Zhao L, Xia S, Zhang T, Cao R, Liang G, et al. De novo design of alpha-helical lipopeptides targeting viral fusion proteins: a promising strategy for relatively broad-spectrum antiviral drug discovery. J Med Chem. 2018;61:8734–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. 2020;81:e21–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Huang D, Yu H, Wang T, Yang H, Yao R, Liang Z. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Med Virol. 2020. https://doi.org/10.1002/jmv.26256.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Lian N, Xie H, Lin S, Huang J, Zhao J, Lin Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin Microbiol Infect. 2020;26:917–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bastebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58:4875–84.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 31.

    Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16:155–66.

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Yao X, Cui C, Liu D, Li H. Clinical pharmacology progress of chloroquine in the treatment of corona virus disease 2019. Clin Med J. 2020;02:30–3 (in Chinese).


    Google Scholar
     

  • 33.

    Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Borba M, Val F, Sampaio VS, Alexandre M, Melo GC, Brito M, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open. 2020;3:e208857.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 35.

    Cheng K, Cheng S, Chen W, Lin M, Chuang S, Cheng I, et al. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antivir Res. 2015;115:9–16.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 36.

    Cheng S, Moses DC, Sun C, Lin M, Hsieh C, Chen Y, et al. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antivir Res. 2018;150:155–63.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 37.

    Baez-Santos YM, St JS, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antivir Res. 2015;115:21–38.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 38.

    Clasman JR, Baez-Santos YM, Mettelman RC, O’Brien A, Baker SC, Mesecar AD, et al. X-ray structure and enzymatic activity profile of a core papain-like protease of MERS coronavirus with utility for structure-based drug design. Sci Rep. 2017;7:40292.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 39.

    Kumar V, Shin JS, Shie JJ, Ku KB, Kim C, Go Y, et al. Identification and evaluation of potent Middle East respiratory syndrome coronavirus (MERS-CoV) 3CL(Pro) inhibitors. Antivir Res. 2017;141:101–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Karypidou K, Ribone SR, Quevedo MA, Persoons L, Pannecouque C, Helsen C, et al. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorg Med Chem Lett. 2018;28:3472–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Smolders EJ, Te BL, Burger DM. SARS-CoV-2 and HIV protease inhibitors: why lopinavir/ritonavir will not work for COVID-19 infection. Antivir Ther. 2020. https://doi.org/10.3851/IMP3365.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Hu D, Shao C, Guan W, Su Z, Sun J. Studies on the interactions of Ti-containing polyoxometalates (POMs) with SARS-CoV 3CL(pro) by molecular modeling. J Inorg Biochem. 2007;101:89–94.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Wu RJ, Zhou KX, Yang H, Song GQ, Li YH, Fu JX, et al. Chemical synthesis, crystal structure, versatile evaluation of their biological activities and molecular simulations of novel pyrithiobac derivatives. Eur J Med Chem. 2019;167:472–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Ren Z, Yan L, Zhang N, Guo Y, Yang C, Lou Z, et al. The newly emerged SARS-Like coronavirus HCoV-EMC also has an “Achilles’ heel”: current effective inhibitor targeting a 3C-like protease. Protein Cell. 2013;4:248–50.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Chang K, Kankanamalage ACG, Fehr AR, Mehzabeen N, Battaile KP, Lovell S, et al. Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur J Med Chem. 2018;150:334–46.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 46.

    Konno H, Onuma T, Nitanai I, Wakabayashi M, Yano S, Teruya K, et al. Synthesis and evaluation of phenylisoserine derivatives for the SARS-CoV 3CL protease inhibitor. Bioorg Med Chem Lett. 2017;27:2746–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 47.

    Liu Y, Zheng TF, Jin F, Zhou L, Liu ZM, Wei P, et al. Design and bioassay of non-peptidic inhibitors of SARS coronavirus 3C-like proteinase. Acta Chim Sin. 2007;16:1707–12.


    Google Scholar
     

  • 48.

    RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2020;396:1345–52.

    Article 

    Google Scholar
     

  • 49.

    Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020;19:1787–99.

    Article 

    Google Scholar
     

  • 50.

    Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9:eaal3653. https://doi.org/10.1126/scitranslmed.aal3653.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395:1569–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Goldman JD, Lye D, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe COVID-19. N Engl J Med. 2020;383:1827–37.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 53.

    Spinner CD, Gottlieb RL, Criner GJ, Arribas LJ, Cattelan AM, Viladomiu AS, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA. 2020;324:1048–57.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Beigel JH, Tomashek KM, Dodd LE. Remdesivir for the treatment of COVID-19-preliminary report. N Engl J Med. 2020;383:994.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 55.

    Peters HL, Jochmans D, de Wilde AH, Posthuma CC, Snijder EJ, Neyts J, et al. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorg Med Chem Lett. 2015;25:2923–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL, Tongeren SAV, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 2014;508:402.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Yoon JS, Kim G, Jarhad DB, Kim HR, Shin YS, Qu S, et al. Design, synthesis, and anti-rna virus activity of 6’-fluorinated-aristeromycin analogues. J Med Chem. 2019;62:6346–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 58.

    Shrestha DB, Budhathoki P, Khadka S, Shah PB, Pokharel N, Rashmi P. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. Virol J. 2020;17:141.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 59.

    Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing). 2020;6:1192–8.

    CAS 

    Google Scholar
     

  • 60.

    Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289:2801–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 61.

    Adedeji AO, Singh K, Kassim A, Coleman CM, Elliott R, Weiss SR, et al. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrob Agents Chemother. 2014;58:4894–8.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 62.

    Lee C, Lee JM, Lee NR, Jin BS, Jang KJ, Kim DE, et al. Aryl diketoacids (ADK) selectively inhibit duplex DNA-unwinding activity of SARS coronavirus NTPase/helicase. Bioorg Med Chem Lett. 2009;19:1636–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 63.

    Tanner JA, Zheng BJ, Zhou J, Watt RM, Jiang JQ, Wong KL, et al. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem Biol. 2005;12:303–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Kim MK, Yu MS, Park HR, Kim KB, Lee C, Cho SY, et al. 2,6-Bis-arylmethyloxy-5-hydroxychromones with antiviral activity against both hepatitis C virus (HCV) and SARS-associated coronavirus (SCV). Eur J Med Chem. 2011;46:5698–704.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 65.

    Zaher NH, Mostafa MI, Altaher AY. Design, synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors. Acta Pharm. 2020;70:145–59.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 66.

    Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Res. 2014;194:191–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Pfefferle S, Schopf J, Kogl M, Friedel CC, Muller MA, Carbajo-Lozoya J, et al. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 2011;7:e1002331.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    de Wilde AH, Raj VS, Oudshoorn D, Bestebroer TM, van Nieuwkoop S, Limpens RWAL, et al. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. J Gen Virol. 2013;94:1749–60.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 69.

    Carbajo-Lozoya J, Ma-Lauer Y, Malešević M, Theuerkorn M, Kahlert V, Prell E, et al. Human coronavims NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives Including Alisporivir. Virus Res. 2014;184:44–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 70.

    Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58:4885–93.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 71.

    Zhang Y, Li T, Fu L, Yu C, Li Y, Xu X, et al. Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett. 2004;560:141–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 72.

    Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL. Inhibition of SARS-CoV replication by siRNA. Antivir Res. 2005;65:45–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 73.

    He ML, Zheng BJ, Chen Y, Wong KL, Huang JD, Lin MC, et al. Development of interfering RNA agents to inhibit SARS-associated coronavirus infection and replication. Hong Kong Med J. 2009;15:28–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Nur SM, Hasan MA, Amin MA, Hossain M, Sharmin T. Design of potential RNAi (miRNA and siRNA) molecules for Middle East respiratory syndrome coronavirus (MERS-CoV) gene silencing by computational method. Interdiscip Sci. 2015;7:257–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 75.

    Akerstrom S, Mirazimi A, Tan YJ. Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antivir Res. 2007;73:219–27.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 76.

    Tang Q, Li B, Woodle M, Lu PY. Application of siRNA against SARS in the rhesus macaque model. Methods Mol Biol. 2008;442:139–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 77.

    Hart BJ, Dyall J, Postnikova E, Zhou H, Kindrachuk J, Johnson RF, et al. Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J Gen Virol. 2014;95:571–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 78.

    Fukushima A, Fukuda N, Lai Y, Ueno T, Moriyama M, Taguchi F, et al. Development of a chimeric DNA-RNA hammerhead ribozyme targeting SARS virus. Intervirology. 2009;52:92–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 79.

    Lundin A, Dijkman R, Bergstrom T, Kann N, Adamiak B, Hannoun C, et al. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus. PLoS Pathog. 2014;10:e1004166.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 80.

    Rider TH, Zook CE, Boettcher TL, Wick ST, Pancoast JS, Zusman BD. Broad-spectrum antiviral therapeutics. PLoS ONE. 2011;6:e22572.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 81.

    Lin SY, Liu CL, Chang YM, Zhao J, Perlman S, Hou MH. Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target. J Med Chem. 2014;57:2247–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 82.

    Liao HI, Olson CA, Hwang S, Deng H, Wong E, Baric RS, et al. mRNA display design of fibronectin-based intrabodies that detect and inhibit severe acute respiratory syndrome coronavirus nucleocapsid protein. J Biol Chem. 2009;284:17512–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 83.

    Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17:144.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 84.

    Wilson L, Gage P, Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology. 2006;353:294–306.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 85.

    Ruediger A, Mayrhofer P, Ma-Lauer Y, Pohlentz G, Muething J, von Brunn A, et al. Tubulins interact with porcine and human S proteins of the genus Alphacoronavirus and support successful assembly and release of infectious viral particles. Virology. 2016;497:185–97.

    CAS 
    Article 

    Google Scholar
     

  • 86.

    Jiang Y, Zhao G, Song N, Li P, Chen Y, Guo Y, et al. Blockade of the C5a–C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg Microbes Infect. 2018;7:77.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Sun S, Zhao G, Liu C, Wu X, Guo Y, Yu H, et al. Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection. Am J Respir Cell Mol Biol. 2013;49:221–30.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 88.

    Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio. 2018;9:e1718–53.

    Article 

    Google Scholar
     

  • 89.

    Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 2016;96:219.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 90.

    Mesel-Lemoine M, Millet J, Vidalain P, Law H, Vabret A, Lorin V, et al. A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J Virol. 2012;86:7577–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 91.

    Siu K, Kok K, Ng MJ, Poon VKM, Yuen K, Zheng BJ, et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem. 2009;284:16202–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 92.

    Yang Y, Zhang L, Geng H, Deng Y, Huang B, Guo Y, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell. 2013;4:951–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 93.

    Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007;81:548–57.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 94.

    Lokugamage KG, Narayanan K, Nakagawa K, Terasaki K, Ramirez SI, Tseng CT. Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin. J Virol. 2015;89:10970–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 95.

    Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Matsuura Y. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J Virol. 2012;86:11128–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 96.

    Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, et al. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol. 2014;95:614–26.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 97.

    Chinese Medical Association, China Association of Chinese Medicine. Consensus of the management of severe acute respiratory syndrome. Natl Med J Chin. 2003;83:1731–52 (in Chinese).


    Google Scholar
     

  • 98.

    Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019;130:3625–39.

    Article 

    Google Scholar
     

  • 99.

    Chinese Medical Association, China Association of Chinese Medicine. Guidelines on diagnosis and treatment of novel coronavirus pneumonia (Trial sixth edition). Chin J Infect Contl. 2020;19:192–5 (in Chinese).


    Google Scholar
     

  • 100.

    Wang N, Zhan Y, Zhu L, Hou Z, Liu F, Song P, et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe. 2020;28:455–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 101.

    Zhou J, Chu H, Chan JF, Yuen K. Middle East respiratory syndrome coronavirus infection: virus-host cell interactions and implications on pathogenesis. Virol J. 2015;12:218.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 102.

    Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 103.

    Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Zhao J, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci USA. 2014;111:4970–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 104.

    Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, et al. T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antivir Res. 2017;1:82–92.

    Article 
    CAS 

    Google Scholar
     

  • 105.

    Cameron MJ, Ran L, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, et al. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol. 2007;81:8692–706.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 106.

    Alshukairi AN, Khalid I, Ahmed WA, Dada AM, Bayumi DT, Malic LS, et al. Antibody response and disease severity in healthcare worker MERS survivors. Emerg Infect Dis. 2016;22:1113–5.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • 107.

    Tang F, Quan Y, Xin Z, Wrammert J, Ma M, Lv H, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011;186:7264–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 108.

    ter Meulen J, van den Brink EN, Poon LLM, Marissen WE, Leung CSW, Cox F, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006;3:e237.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 109.

    Miyoshi-Akiyama T, Ishida I, Fukushi M, Yamaguchi K, Matsuoka Y, Ishihara T, et al. Fully human monoclonal antibody directed to proteolytic cleavage site in severe acute respiratory syndrome (SARS) coronavirus S protein neutralizes the virus in a rhesus macaque SARS model. J Infect Dis. 2011;203:1574–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 110.

    Houser KV, Gretebeck L, Ying T, Wang Y, Vogel L, Lamirande EW, et al. Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)—specific human monoclonal antibody protects rabbits from MERS-CoV infection. J Infect Dis. 2016;213:1557–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 111.

    Pascal KE, Coleman CM, Mujica AO, Kamat V, Badithe A, Fairhurst J, et al. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci USA. 2015;112:8738–43.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 112.

    Johnson RF, Bagci U, Keith L, Tang X, Mollura DJ, Zeitlin L, et al. 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012. Virology. 2016;490:49–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 113.

    Corti D, Zhao J, Pedotti M, Simonelli L, Agnihothram S, Fett C, et al. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc Natl Acad Sci USA. 2015;112:10473–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 114.

    Chen Z, Bao L, Chen C, Zou T, Xue Y, Li F, et al. Human neutralizing monoclonal antibody inhibition of Middle East respiratory syndrome coronavirus replication in the common marmoset. J Infect Dis. 2017;215:1807–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 115.

    Jiang L, Wang N, Zuo T, Shi X, Poon KM, Wu Y, et al. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med. 2014;6:234r–59r.

    Article 
    CAS 

    Google Scholar
     

  • 116.

    Niu P, Zhang S, Zhou P, Huang B, Deng Y, Qin K, et al. Ultrapotent human neutralizing antibody repertoires against Middle East respiratory syndrome coronavirus from a recovered patient. J Infect Dis. 2018;218:1249–60.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 117.

    Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9:382–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 118.

    Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw F, Lim WS, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015;211:80–90.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 119.

    Liu STH, Lin HM, Baine I, Wajnberg A, Gumprecht JP, Rahman F, et al. Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study. Nat Med. 2020;26:1708–13.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 120.

    Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA. 2020;324:460–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 121.

    Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 122.

    Wang Y, Jiang W, He Q, Wang C, Wang B, Zhou P, et al. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct Target Ther. 2020;5:57.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 123.

    Edalatifard M, Akhtari M, Salehi M, Naderi Z, Jamshidi A, Mostafaei S, et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur Respir J. 2020;56(6):2002808.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 124.

    Sterne J, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324:1330–41.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 125.

    Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, et al. Efficacy of tocilizumab in patients hospitalized with COVID-19. N Engl J Med. 2020;383(24):2333–44.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 126.

    Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, Ravaud P, et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med. 2020;20:e206820.


    Google Scholar
     

  • 127.

    Salvarani C, Dolci G, Massari M, Merlo DF, Cavuto S, Savoldi L, et al. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA Intern Med. 2021;181(1):24–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 128.

    Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:2045–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 129.

    Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, et al. Antiviral effects of glycyrrhiza species. Phytother Res. 2008;22(2):141–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 130.

    Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem. 2005;48(4):1256–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 131.

    Wang M, Sun G, Wang X. Experimental study on effects of Chinese herbal preparations on SARS virus. Chin J Basic Med Tradit Chin Med. 2004;10:38–9 (in Chinese).


    Google Scholar
     

  • 132.

    Li S, Chen C, Zhang H, Guo H, Wang H, Wang L, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir Res. 2005;67(1):18–23.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 133.

    Lu Y, Jiang Y, Ling L, Zhang Y, Li H, Chen D. Beneficial effects of Houttuynia cordata polysaccharides on “two-hit” acute lung injury and endotoxic fever in rats associated with anti-complementary activities. Acta Pharm Sin B. 2018;8:218–27.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 134.

    Lau K, Lee K, Koon C, Cheung CS, Lau C, Ho HM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol. 2008;118:79–85.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 135.

    Jiang D, Chen W, Xu J, Yu T, Lu P, Mu X. Effect of herbs for prevention and cure of SARS on neutrophil cAMP-phosphodiesterase activity. Chin J Vet Med. 2006;42:38–9 (in Chinese).


    Google Scholar
     

  • 136.

    Kostoff RN. Literature-related discovery: Potential treatments and preventatives for SARS. Technol Forecast Soc Change. 2011;78:1164–73.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 137.

    Ryu YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett. 2010;20:1873–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 138.

    Park J, Kim JH, Kwon JM, Kwon H, Jeong HJ, Kim YM, et al. Dieckol, a SARS-CoV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg Med Chem. 2013;21:3730–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 139.

    Park JY, Jeong HJ, Kim JH, Kim YM, Park SJ, Kim D, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull. 2012;35:2036–42.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 140.

    Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh JW, Cho JK, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem. 2014;29(1):59–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 141.

    Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem. 2016;31:23–30.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 142.

    Park JY, Kim JH, Kim YM, Jeong HJ, Kim DW, Jeong HJ, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem. 2012;20:5928–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 143.

    Niu M, Wang RL, Wang ZX, Zhang P, Bai ZF, Jing J, et al. Rapid establishment of traditional Chinese medicine prevention and treatment of 2019-nCoV based on clinical experience and molecular docking. Chin J Chin Materia Med. 2020;45:1213–8 (in Chinese).


    Google Scholar
     

  • 144.

    Zhang Y, Tang D, Shu B, Li W, Zhang J, Li Y, et al. Evaluation and analysis on the SARS-CoV-2-induced injuries in multiple organs and the intervention of traditional Chinese medicine based on renin-angiotensin system. Modern Tradit Chin Med Materia Med-World Sci Tech. 2020;22:264–9 (in Chinese).


    Google Scholar
     

  • 145.

    Jin X, Guan R, Mao J, Wang Y, Wang F, Li C, et al. Exploration on material basis of Qingfei Paidu Decoction with multi-target system against COVID-19 based on CADD. Chin Tradit Herb Drugs. 2020;51:1984–95 (in Chinese).


    Google Scholar
     

  • 146.

    Zong Y, Yao W, Ju W. The intervention effect investigation of Chinese medicine monomer on cytokine storm induced by COVID-19 based on interleukin-6 receptor. Chin J Hosp Pharma. 2020;40:1182–8 (in Chinese).


    Google Scholar
     

  • 147.

    Huang J, Zhang B, Lin Z. Intervention effect of Chinese medicine on interleukin cytokines and thinking on its prevention and treatment for inflammatory storm of COVID-19. Pharmacol Clin Chin Materia Med. 2020;36:23–8 (in Chinese).


    Google Scholar
     

  • 148.

    Liu J, Fan M, Sun K, Sun R. Exploring active ingredients and function mechanism of Chaihu Guizhi Ganjiang Decoction against coronavirus disease 2019 based on molecular docking technology. Chin Tradit Herb Drugs. 2020;51:1704–12 (in Chinese).


    Google Scholar
     

  • 149.

    Chen R, Wang T, Li K, Shang R, Song J, Zhang J. Characteristics and application of immune-regulating and antiviral Chinese materia medica. Chin Tradit Herb Drugs. 2020;51:1412–26 (in Chinese).

  • 150.

    Li J, Wei B, Li K, Su X, Zhang Z. Natural product research and development. Nat Prod Res Dev. 2020;32:1981–91 (in Chinese).

  • 151.

    Ma J, Huo X, Chen X, Zhu W, Yao M, Qian Y. Study on screening potential traditional Chinese medicines against 2019-nCoV based on Mpro and PLP. Chin J Chin Materia Med. 2020;1219–1224. (in Chinese).

  • 152.

    Liu C, Zhu X, Lu Y, Zhang X, Jia X, Yang T. Potential treatment of Chinese and western medicine targeting Nsp14 of SARS-CoV-2. J Pharm Anal. 2020. https://doi.org/10.1016/j.jpha.2020.08.002.10.1016/j.jpha.2020.08.002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 153.

    Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R, Pleschka S, et al. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antivir Res. 2018;150:123–9.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 154.

    Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des. 2019;94:2023–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 155.

    Chang F, Yen C, Ei-Shazly M, Lin W, Yen M, Lin K, et al. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat Prod Commun. 2012;7:1415–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 156.

    Wenga J, Linb C, Hsueh-Chou Laic D, Line Y, Wange C, Tsai YC, et al. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res. 2019;273:197767.

    Article 
    CAS 

    Google Scholar
     

  • 157.

    Liang A, Ling Y, Liu H. Application of traditional Chinese medicine in the prevention and treatment of SARS. Pharm J Chin People’s Lib Army. 2003;19:367–9 (in Chinese).


    Google Scholar
     



  • Source link Fit Fast Without Pills

    You May Also Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *